Energy Stored in a Capacitor: Concepts, Formulas, Videos and Examples (2024)

Electrostatic Potential and Capacitance

You already know that capacitors can store electric charges. But, do you know how is the energy stored in a capacitor? And how much energy a capacitor can hold? Here we will study about the energy stored in a capacitor. We will see how much heat we can get out of a combination of capacitors.

Suggested Videos

').appendTo(this.scroller));n2const.rtl.isRtl?(this.previous=this.$widget.find(".nextend-thumbnail-next").on("click",this.previousPane.bind(this)),this.next=this.$widget.find(".nextend-thumbnail-previous").on("click",this.nextPane.bind(this))):(this.previous=this.$widget.find(".nextend-thumbnail-previous").on("click",this.previousPane.bind(this)),this.next=this.$widget.find(".nextend-thumbnail-next").on("click",this.nextPane.bind(this))),this.slider.stages.done("BeforeShow",this.onBeforeShow.bind(this)),this.slider.stages.done("WidgetsReady",this.onWidgetsReady.bind(this))},t.prototype.renderThumbnails=function(){var t;this.parameters.invertGroupDirection&&(t=Math.ceil(this.slider.visibleRealSlides.length/this.group));for(var i=0;i

');if(this.parameters.invertGroupDirection?s.appendTo(this.$groups.eq(Math.floor(i/t))):s.appendTo(this.$groups.eq(i%this.group)),s.data("slide",e),e.$thumbnail=s,this.parameters.thumbnail!==c){var h=e.getThumbnailType(),n=p[h]!==c?p[h]:"";d('

'+n+"

").css("background-image","url('"+e.getThumbnail()+"')").appendTo(s)}if(this.parameters.caption!==c){var r=d('');switch(this.parameters.caption.placement){case"before":r.prependTo(s);break;default:r.appendTo(s)}if(this.parameters.title!==c&&r.append('

'+e.getTitle()+"

"),this.parameters.description!==c){var o=e.getDescription();o&&r.append('

'+o+"

")}}}var a="universalclick",l="onDotClick";"mouseenter"===this.parameters.action?(a="universalenter",l="onDotHover"):this.slider.hasTouch()&&(a="n2click"),this.dots=this.scroller.find(".nextend-thumbnail-scroller-group > div").on(a,this[l].bind(this)),this.images=this.dots.find(".n2-ss-thumb-image")},t.prototype.onTap=function(t){i||(d(t.target).trigger("n2click"),i=!0,setTimeout(function(){i=!1},500))},t.prototype.onBeforeShow=function(){var t=!1;switch(this.parameters.area){case 5:t="left";break;case 8:t="right"}t&&(this.offset=parseFloat(this.$widget.data("offset")),this.slider.responsive.addHorizontalSpacingControl(t,this)),this.renderThumbnails(),this.slider.hasTouch()&&(N2Classes.EventBurrito(this.$widget.get(0),{mouse:!0,axis:"x",start:function(){this.bar.width();this._touch={start:parseInt(this.scroller.css(n2const.rtl.left)),max:0},this.getScrollerWidth()this._touch.start?this.previousPane():this.nextPane(),Math.abs(e.x)<10&&Math.abs(e.y)<10?this.onTap(t):nextend.preventClick(),delete this._touch}.bind(this)}),this.slider.parameters.controls.drag||this.$widget.on("click",this.onTap.bind(this))),this.widthPercent=this.$widget.data("width-percent"),this.thumbnailDimension={widthLocal:this.dots.width(),width:this.dots.outerWidth(!0),height:this.dots.outerHeight(!0),widthBorder:parseInt(this.dots.css("borderLeftWidth"))+parseInt(this.dots.css("borderRightWidth"))+parseInt(this.dots.css("paddingLeft"))+parseInt(this.dots.css("paddingRight")),heightBorder:parseInt(this.dots.css("borderTopWidth"))+parseInt(this.dots.css("borderBottomWidth"))+parseInt(this.dots.css("paddingTop"))+parseInt(this.dots.css("paddingBottom"))},this.thumbnailDimension.widthMargin=this.thumbnailDimension.width-this.dots.outerWidth(),this.thumbnailDimension.heightMargin=this.thumbnailDimension.height-this.dots.outerHeight(),this.imageDimension={width:this.images.outerWidth(!0),height:this.images.outerHeight(!0)},this.sideDimension=.25*this.thumbnailDimension.width,this.scroller.height(this.thumbnailDimension.height*this.ratio*this.group+"px"),this.bar.height(this.scroller.outerHeight(!0)+"px"),this.horizontalSpacing=this.bar.outerWidth()-this.bar.width(),this.slider.sliderElement.on({SlideWillChange:this.onSlideSwitch.bind(this),visibleRealSlidesChanged:this.onVisibleRealSlidesChanged.bind(this)})},t.prototype.onWidgetsReady=function(){this.activateDots(this.slider.currentSlide.index),this.slider.sliderElement.on("SliderResize",this.onSliderResize.bind(this)),this.onSliderResize()},t.prototype.filterSliderVerticalCSS=function(t){};var e=!(t.prototype.onSliderResize=function(){if(this.slider.visibleRealSlides.length){if(this.lastScrollerWidth!==this.getScrollerWidth()){var t,i=1,e=this.getScrollerWidth(),s=e-2*this.sideDimension;if((t=e/this.thumbnailDimension.width)=t&&(this.localSideDimension=.1*e,i=(s=e-2*this.localSideDimension)/(this.parameters.minimumThumbnailCount*this.thumbnailDimension.width),t=s/(this.thumbnailDimension.width*i),(t=e/(this.thumbnailDimension.width*i))e;e++)i[e].$thumbnail.addClass("n2-active")},t.prototype.resetPane=function(){this.goToDot(this.currentI)},t.prototype.previousPane=function(){this.goToDot(this.currentI-this.itemsPerPane*this.group)},t.prototype.nextPane=function(){this.goToDot(this.currentI+this.itemsPerPane*this.group)},t.prototype.getPaneByIndex=function(t){return t=Math.max(0,Math.min(this.dots.length-1,t)),this.parameters.invertGroupDirection?Math.floor(t%Math.ceil(this.dots.length/this.group)/this.itemsPerPane):Math.floor(t/this.group/this.itemsPerPane)},t.prototype.getScrollerTargetLeft=function(t){this.lastScrollerWidth=this.getScrollerWidth();var i=0;t===Math.floor((this.dots.length-1)/this.group/this.itemsPerPane)?(i=-t*this.itemsPerPane*this.thumbnailDimension.width*this.ratio,0===t?this.previous.removeClass("n2-active"):this.previous.addClass("n2-active"),this.next.removeClass("n2-active")):(0

Energy Stored in a Capacitor

Work has to be done to transfer charges onto a conductor, against the force of repulsion from the already existing charges on it. This work is stored as a potential energy of the electric field of the conductor.

Energy Stored in a Capacitor: Concepts, Formulas, Videos and Examples (9)Energy Stored in a Capacitor: Concepts, Formulas, Videos and Examples (10)

Suppose a conductor of capacity C is at a potential V0and let q0be the charge on the conductor at this instant. The potential of the conductor when (during charging) the charge on it was q (< q0) is,

V∝ q or V = Cq; where ‘C’ is a constant of proportionality that depends on the nature of the material of the conductor. This constant is known as the capacitance.

If we wish to transfer more charge to this conductor, work has to be done against the repulsive forces of the charges already present on the conductor. Let us say that we have to transfer a small charge ‘dq’ which takes a small amount of work ‘dW’. Then work done in bringing a small charge dq at this potential (V) is =

Energy Stored in a Capacitor: Concepts, Formulas, Videos and Examples (11)

The total work done in charging it from 0 to q0is now easy to calculate. All we have to do is to take an integral of the above equation between the relevant limits as shown below:

Energy Stored in a Capacitor: Concepts, Formulas, Videos and Examples (12)

This work is stored as the potential energy and we have:

Energy Stored in a Capacitor: Concepts, Formulas, Videos and Examples (13)

Further by using q0= CV0we can write this expression also as,

Energy Stored in a Capacitor: Concepts, Formulas, Videos and Examples (14)

In general, if a conductor of capacity C is charged to a potential V by giving it a charge q, then

Energy Stored in a Capacitor: Concepts, Formulas, Videos and Examples (15)

Browse more Topics Under Electrostatic Potential And Capacitance

  • Electric Potential Energy and Electric Potential
  • Capacitors and Capacitance
  • Electrostatics of Conductors
  • The Parallel Plate Capacitor
  • Combination of Capacitors
  • Dielectrics and Polarisation
  • Effect of Dielectric on Capacitance
  • Van De Graaff Generator

Energy Density of a Charged Capacitor

This energy is localized on the charges or the plates but is distributed in the field. Since in case of a parallel plate capacitor, the electric field is only between the plates, i.e., in a volume (A × d), the energy density =

UE = U/Volume; using the formula C =ε0A/d, we can write it as:

Energy Stored in a Capacitor: Concepts, Formulas, Videos and Examples (16)

Browse more Topics under Electrostatic Potential And Capacitance

  • Electric Potential Energy and Electric Potential
  • Capacitors and Capacitance
  • Electrostatics of Conductors
  • The Parallel Plate Capacitor
  • Combination of Capacitors
  • Dielectrics and Polarisation
  • Effect of Dielectric on Capacitance
  • Van De Graaff Generator

Heat Generated

Since, Q = CV (C = equivalent capacitance)

So, W = (1/2) (CV)2 / C = 1/2 CV2

Now the energy stored in a capacitor, U = W =

Energy Stored in a Capacitor: Concepts, Formulas, Videos and Examples (17)

Therefore, the energy dissipated in form of heat (due to resistance)

H = Work done by battery – {final energy of capacitor – initial energy of capacitor}

Distribution of Charges on Connecting two Charged Capacitors

When two capacitors C1and C2are connected as shown in figure

Energy Stored in a Capacitor: Concepts, Formulas, Videos and Examples (18)Energy Stored in a Capacitor: Concepts, Formulas, Videos and Examples (19)

We can sum it up in the following table:

Energy Stored in a Capacitor: Concepts, Formulas, Videos and Examples (20)

(a) Common potential:

By charge conservation on plates A and C before and after connection.

Q1+ Q2= C1V + C2V

Energy Stored in a Capacitor: Concepts, Formulas, Videos and Examples (21)

or we can say that the common potential will be = (Total charge on the capacitors)/(Total capacitance of the system)

(b) To find the values of final charge on either of the capacitors, we use the following:

Energy Stored in a Capacitor: Concepts, Formulas, Videos and Examples (22)

here ‘V’ is the common potential. Similarly, we can write that:

Energy Stored in a Capacitor: Concepts, Formulas, Videos and Examples (23)

The heat lost during redistribution:

Energy Stored in a Capacitor: Concepts, Formulas, Videos and Examples (24)

The following points are to be noted:

  • When plates of similar charges are connected with each other ( + with + and – with -) then put all values (Q1, Q2, V1, V2) with a positive sign.
  • When plates of opposite polarity are connected with each other ( + with -) then take charge and potential of one of the plate to be negative.

Solved Question for You

Question 1: Write a note on conductors and insulators.

Answer:Conductor contains a large number of free charge carriersto conduct electricity while insulator does not contain any free charge carriers toconduct electricity.

  • Examples of conductors are metals and graphite.
  • Examples of insulators are plastic rod and nylon.
PreviousThe Parallel Plate Capacitor
NextCombination of Capacitors

Customize your course in 30 seconds

Which class are you in?

5th

6th

7th

8th

9th

10th

11th

12th

Energy Stored in a Capacitor: Concepts, Formulas, Videos and Examples (2024)

References

Top Articles
Latest Posts
Article information

Author: Gov. Deandrea McKenzie

Last Updated:

Views: 6397

Rating: 4.6 / 5 (66 voted)

Reviews: 89% of readers found this page helpful

Author information

Name: Gov. Deandrea McKenzie

Birthday: 2001-01-17

Address: Suite 769 2454 Marsha Coves, Debbieton, MS 95002

Phone: +813077629322

Job: Real-Estate Executive

Hobby: Archery, Metal detecting, Kitesurfing, Genealogy, Kitesurfing, Calligraphy, Roller skating

Introduction: My name is Gov. Deandrea McKenzie, I am a spotless, clean, glamorous, sparkling, adventurous, nice, brainy person who loves writing and wants to share my knowledge and understanding with you.